Project: ENCORE

Date: 09/06/22
Engineer:
BMH

RBI ENCORE RB0500 INDOOR DUAL FUEL UNIT - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Slab on Grade Applications Only

Equipment Parameters:

weight, | W_{p} | $=549.88 \mathrm{LBS}$. |
| ---: | :--- |
| w | $=26.97 \mathrm{in}$. |
| L | $=39.38$ |
| h. | |
| h. | $=66.09 \mathrm{in}$. |
| cg | $=230.95 \mathrm{in}$. |

Seismic Parameters:

S_{S}	$=1.800$ ASCE 7-16 Figure 22-1 using 84th percentile value
a_{p}	$=1.000$
I_{p}	$=1.500$
	(ASCE $7-16$ Table 13.6-1)
(ASCE 7-16 Table 13.1.3)	

Seismic Force:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p}}=\left(0.4^{*} \mathrm{a}_{\mathrm{p}}{ }^{*} \mathrm{~S}_{\mathrm{DS}}{ }^{*} \mathrm{~W}_{\mathrm{p}}\right) /\left(\mathrm{R}_{\mathrm{p}} / \mathrm{I}_{\mathrm{p}}\right)=272.5 \text { LBS. (ASCE 7-16 Eqn. 13.3-1) } \\
& \text { Upper Limit: } \mathrm{F}_{\mathrm{PMAX}}=1.6^{*} \mathrm{~S}_{\mathrm{DS}}{ }^{*} I_{\mathrm{p}}{ }^{*} W_{\mathrm{p}}=1635.0 \text { LBS. (ASCE 7-16 Eqn. 13.3-2) } \\
& \text { Lower Bound: } \mathrm{F}_{\text {PMIN }}=0.3^{*} \mathrm{~S}_{\mathrm{DS}}{ }^{*} 1_{\mathrm{p}}{ }^{*} \mathrm{~W}_{\mathrm{p}}=\mathbf{3 0 6 . 6} \text { LBS. (ASCE 7-16 Eqn. 13.3-3) } \\
& \mathrm{F}_{\mathrm{p}, \mathrm{DESIGN}}=306.6 \mathrm{LBS} .
\end{aligned}
$$

Project: ENCORE
Date:
Engineer: $\overline{\mathrm{BMH}}$

RBI ENCORE RB0500 INDOOR DUAL FUEL UNIT - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:

Horizontal Shear Force Per Anchor

$$
\mathrm{R}_{\mathrm{H}}=\mathrm{F}_{\mathrm{p}} / 4=76.6 \mathrm{LBS} .
$$

Overturning Resistance About Point A:

$x=39.38$
$x=$ lesser of L or h

$$
\mathrm{M}_{\mathrm{OT}}=\mathrm{F}_{\mathrm{p}}{ }^{*} \mathrm{cg}=9488.4 \text { LBS.-FT. }
$$

$$
M_{\text {RES }}=W_{p}^{*} x / 2=10827.1 \text { LBS.-FT. OK, No Uplift }
$$

Vertical Acceleration:
assume $\rho=1.0$ $E v=\rho^{*} F p+0.2^{*} S_{D S}{ }^{*} W=212.9$ LBS. (IBC Eqn. 1617.1.1)
$R_{\text {VNETUP }}=\left(M_{\mathrm{OT}} /\left(2^{*} \mathrm{x}\right)\right)-\left(\mathrm{W}_{\mathrm{p}} / 4\right)+(\mathrm{Ev} / 4)=36.2$ LBS. No Uplfit

Force Summary Per Corner:
Component Anchorage:

$R_{\text {HNET }}$	$=\mathbf{7 6 . 6}$	LBS.
$R_{\text {VNETUP }}$	$=\mathbf{3 6 . 2}$ LBS.	

Anchors Embedded in Concrete or CMU:

$1.3^{*} R_{p}{ }^{*} R_{\text {HNET }}$	$=149.5$
$1.3^{*} \mathrm{R}_{\mathrm{p}}{ }^{*} \mathrm{R}_{\text {VNETUP }}$	LBS. (IBC 1617.1.7 \#2)
	$\mathbf{7 0 . 6}$ LBS. (IBC 1617.1.7 \#2)

